Monday 9 October 2017

Beräkna A Glidande Medelvärde Prognos


Flyttande medelprognos Inledning. Som du kan gissa vi tittar på några av de mest primitiva tillvägagångssätten för prognoser. Men förhoppningsvis är dessa åtminstone en värdefull introduktion till några av de datorproblem som är relaterade till att implementera prognoser i kalkylblad. I den här venen fortsätter vi med att börja i början och börja arbeta med Moving Average prognoser. Flyttande medelprognoser. Alla är bekanta med att flytta genomsnittliga prognoser oavsett om de tror att de är. Alla studenter gör dem hela tiden. Tänk på dina testresultat i en kurs där du ska ha fyra tester under semestern. Låt oss anta att du fick en 85 på ditt första test. Vad skulle du förutse för ditt andra testresultat Vad tycker du att din lärare skulle förutsäga för nästa testresultat Vad tycker du att dina vänner kan förutsäga för nästa testresultat Vad tror du att dina föräldrar kan förutsäga för nästa testresultat Oavsett om alla blabbing du kan göra för dina vänner och föräldrar, de och din lärare förväntas mycket sannolikt att du får något i området 85 du bara har. Nåväl, nu kan vi anta att trots din självbefrämjande till dina vänner överskattar du dig själv och räknar att du kan studera mindre för det andra testet och så får du en 73. Nu vad är alla berörda och oroade att Förutse att du kommer att få ditt tredje test Det finns två väldigt troliga metoder för att utveckla en uppskattning oavsett om de kommer att dela den med dig. De kan säga till sig själva: "Den här killen sprider alltid rök om hans smarts. Hes kommer att få ytterligare 73 om han är lycklig. Kanske kommer föräldrarna att försöka vara mer stödjande och säga, Quote, hittills har du fått en 85 och en 73, så kanske du ska räkna med att få en (85 73) 2 79. Jag vet inte, kanske om du gjorde mindre fester och werent vaggar vassan överallt och om du började göra mycket mer studerar kan du få en högre poäng. quot Båda dessa uppskattningar flyttade faktiskt genomsnittliga prognoser. Den första använder endast din senaste poäng för att förutse din framtida prestanda. Detta kallas en glidande genomsnittlig prognos med en period av data. Den andra är också en rörlig genomsnittlig prognos men använder två dataperioder. Låt oss anta att alla dessa människor bråkar på ditt stora sinne, har gett dig en puss och du bestämmer dig för att göra det bra på det tredje testet av dina egna skäl och att lägga ett högre poäng framför din quotalliesquot. Du tar testet och din poäng är faktiskt en 89 Alla, inklusive dig själv, är imponerade. Så nu har du det sista testet av terminen som kommer upp och som vanligt känner du behovet av att ge alla till att göra sina förutsägelser om hur du ska göra på det sista testet. Jo, förhoppningsvis ser du mönstret. Nu kan du förhoppningsvis se mönstret. Vilken tror du är den mest exakta visselpipan medan vi arbetar. Nu återvänder vi till vårt nya rengöringsföretag som startas av din främmande halvsyster, kallad Whistle While We Work. Du har några tidigare försäljningsdata som representeras av följande avsnitt från ett kalkylblad. Vi presenterar först data för en treårs glidande medelprognos. Posten för cell C6 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C7 till och med C11. Lägg märke till hur genomsnittet rör sig över de senaste historiska data men använder exakt de tre senaste perioderna som finns tillgängliga för varje förutsägelse. Du bör också märka att vi inte verkligen behöver göra förutsägelser för de senaste perioderna för att utveckla vår senaste förutsägelse. Detta är definitivt annorlunda än exponentiell utjämningsmodell. Ive inkluderade quotpast predictionsquot eftersom vi kommer att använda dem på nästa webbsida för att mäta förutsägelse validitet. Nu vill jag presentera de analoga resultaten för en tvåårs glidande medelprognos. Posten för cell C5 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C6 till och med C11. Lägg märke till hur nu endast de två senaste bitarna av historiska data används för varje förutsägelse. Återigen har jag inkluderat quotpast predictionsquot för illustrativa ändamål och för senare användning i prognosvalidering. Några andra saker som är viktiga att märka. För en m-period som rör genomsnittlig prognos används endast de senaste datavärdena för att göra förutsägelsen. Inget annat är nödvändigt. För en m-period rörande genomsnittlig prognos, när du gör quotpast predictionsquot, märka att den första förutsägelsen sker i period m 1. Båda dessa problem kommer att vara väldigt signifikanta när vi utvecklar vår kod. Utveckla den rörliga genomsnittsfunktionen. Nu behöver vi utveckla koden för den glidande medelprognosen som kan användas mer flexibelt. Koden följer. Observera att inmatningarna är för antalet perioder du vill använda i prognosen och en rad historiska värden. Du kan lagra den i vilken arbetsbok du vill ha. Funktion MovingAverage (Historical, NumberOfPeriods) Som enstaka deklarering och initialisering av variabler Dim-objekt som variant Dim-räknare som integer Dim-ackumulering som enstaka Dim HistoricalSize som heltal Initialiserande variabler Counter 1 ackumulering 0 Bestämning av storleken på Historisk matris Historisk storlek Historical. Count för Counter 1 till NumberOfPeriods Ackumulera lämpligt antal senast tidigare observerade värden ackumulering ackumulering historisk (historicalSize - numberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Koden förklaras i klassen. Du vill placera funktionen på kalkylbladet så att resultatet av beräkningen visas där den ska gälla följande. Flyttande medel och exponentiella utjämningsmodeller Som ett första steg för att flytta bortom genomsnittliga modeller, slumpmässiga gångmodeller och linjära trendmodeller, nonseasonal mönster och trender kan extrapoleras med hjälp av en rörlig genomsnitts - eller utjämningsmodell. Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt (lokalt) medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för den närmaste framtiden. Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-utan-drift-modellen. Samma strategi kan användas för att uppskatta och extrapolera en lokal trend. Ett rörligt medelvärde kallas ofta en quotsmoothedquot-version av den ursprungliga serien, eftersom kortsiktig medelvärde medför att utjämning av stötarna i originalserien. Genom att justera graden av utjämning (bredden på det glidande medlet) kan vi hoppas att hitta någon form av optimal balans mellan prestandan hos medel - och slumpmässiga gångmodeller. Den enklaste typen av medelvärdesmodell är. Enkelt (lika viktat) Flyttande medelvärde: Prognosen för värdet av Y vid tiden t1 som är gjord vid tiden t motsvarar det enkla medelvärdet av de senaste m-observationerna: (Här och på annat håll använder jag symbolen 8220Y-hat8221 för att stå för en prognos av tidsserien Y som gjordes så tidigt som möjligt enligt en given modell.) Detta medel är centrerat vid period-t (m1) 2 vilket innebär att uppskattningen av det lokala medelvärdet tenderar att ligga bakom det sanna värdet av det lokala medelvärdet med ca (m1) 2 perioder. Således säger vi att medelåldern för data i det enkla glidande medlet är (m1) 2 i förhållande till den period för vilken prognosen beräknas: det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkter i data . Om du till exempel medger de senaste 5 värdena, kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m1 är den enkla glidande genomsnittsmodellen (SMA) motsvarar den slumpmässiga gångmodellen (utan tillväxt). Om m är väldigt stor (jämförbar med längden på uppskattningsperioden) motsvarar SMA-modellen den genomsnittliga modellen. Precis som med vilken parameter som helst av en prognosmodell, är det vanligt att justera värdet på k för att få den bästa kvotfoten till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar utgöra slumpmässiga fluktuationer runt ett långsamt varierande medelvärde. Först kan vi försöka passa på den med en slumpmässig promenadmodell, vilket motsvarar ett enkelt glidande medelvärde på 1 term: Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därigenom väljer man mycket av kvotenhetskvoten i data (de slumpmässiga fluktuationerna) samt quotsignalquot (den lokala medelvärdet). Om vi ​​istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser: Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga gångmodellen i det här fallet. Medelåldern för data i denna prognos är 3 ((51) 2), så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. (Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare.) Notera att de långsiktiga prognoserna från SMA-modellen är en horisontell rak linje, precis som i slumpmässig promenad modell. Således antar SMA-modellen att det inte finns någon trend i data. Men medan prognoserna från den slumpmässiga promenadmodellen helt enkelt motsvarar det senast observerade värdet är prognoserna från SMA-modellen lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla glidande genomsnittet blir inte större eftersom prognostiseringshorisonten ökar. Det här är uppenbarligen inte korrekt Tyvärr finns det ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde utvidgas för denna modell. Det är dock inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre tid. Du kan till exempel skapa ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt etc. i det historiska dataprov. Därefter kan du beräkna felfunktionens avvikelser vid varje prognoshorisont och sedan konstruera konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar med lämplig standardavvikelse. Om vi ​​försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt: Medelåldern är nu 5 perioder (91) 2). Om vi ​​tar ett 19-årigt glidande medel ökar medeltiden till 10: Observera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-siktigt genomsnitt: Modell C, det 5-åriga glidande medlet, ger det lägsta värdet av RMSE med en liten marginal över 3 - term och 9-medeltal, och deras andra statistik är nästan identiska. Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer respons eller lite mer jämnhet i prognoserna. (Tillbaka till början av sidan.) Browns Simple Exponential Smoothing (exponentiellt vägd glidande medelvärde) Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de senaste k-observationerna lika och fullständigt ignorerar alla föregående observationer. Intuitivt bör tidigare data diskonteras på ett mer gradvis sätt - till exempel bör den senaste observationen få lite mer vikt än 2: a senast, och den 2: a senaste bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämningens (SES) - modellen åstadkommer detta. Låt 945 beteckna en quotsmoothing constantquot (ett tal mellan 0 och 1). Ett sätt att skriva modellen är att definiera en serie L som representerar den nuvarande nivån (dvs lokal medelvärde) för serien som uppskattad från data fram till idag. Värdet på L vid tid t beräknas rekursivt från sitt eget tidigare värde som detta: Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där 945 styr närheten av det interpolerade värdet till den senaste observation. Prognosen för nästa period är helt enkelt det nuvarande släta värdet: Likvärdigt kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner. I den första versionen är prognosen en interpolation mellan föregående prognos och tidigare observation: I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel av 945. Är felet gjort vid tid t. I den tredje versionen är prognosen ett exponentiellt vägt (dvs. rabatterat) glidande medelvärde med rabattfaktor 1-945: Interpolationsversionen av prognosformuläret är det enklaste att använda om du genomför modellen på ett kalkylblad: det passar in i en encell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet 945 lagras. Observera att om 945 1 motsvarar SES-modellen en slumpmässig gångmodell (utan tillväxt). Om 945 0 motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet. (Återgå till början av sidan.) Medelåldern för data i prognosen för enkel exponentiell utjämning är 1 945 i förhållande till den period som prognosen beräknas för. (Det här är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie.) Den enkla, snabba genomsnittliga prognosen tenderar därför att ligga bakom vändpunkter med cirka 1 945 perioder. Till exempel, när 945 0,5 är fördröjningen 2 perioder när 945 0,2 är fördröjningen 5 perioder när 945 0,1 är fördröjningen 10 perioder, och så vidare. För en given medelålder (dvs mängden fördröjning) är prognosen för enkel exponentiell utjämning (SES) något överlägsen SMA-prognosen (Simple Moving Average) eftersom den lägger relativt större vikt vid den senaste observationen, dvs. det är något mer quotresponsivequot för förändringar som inträffade under det senaste förflutna. Till exempel har en SMA-modell med 9 villkor och en SES-modell med 945 0,2 båda en genomsnittlig ålder på 5 för data i sina prognoser, men SES-modellen lägger mer vikt på de sista 3 värdena än SMA-modellen och vid samtidigt som det inte helt 8220forget8221 om värden som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som kontinuerligt varierar, så att den lätt kan optimeras genom att använda en kvotsolverquot-algoritm för att minimera det genomsnittliga kvadratfelet. Det optimala värdet på 945 i SES-modellen för denna serie visar sig vara 0,2961, som visas här: Medelåldern för data i denna prognos är 10,2961 3,4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är en horisontell rak linje. som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt. Observera dock att de konfidensintervaller som beräknas av Statgraphics avviker nu på ett rimligt sätt, och att de är väsentligt smalare än konfidensintervallet för slumpmässig promenadmodell. SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell. så ger den statistiska teorin om ARIMA-modeller en bra grund för beräkning av konfidensintervaller för SES-modellen. I synnerhet är en SES-modell en ARIMA-modell med en icke-säsongsskillnad, en MA (1) term och ingen konstant term. annars känd som en quotARIMA (0,1,1) modell utan constantquot. MA (1) - koefficienten i ARIMA-modellen motsvarar kvantiteten 1-945 i SES-modellen. Om du till exempel passar en ARIMA-modell (0,1,1) utan konstant till serien som analyseras här, uppskattas den uppskattade MA (1) - koefficienten vara 0,7029, vilket är nästan exakt en minus 0,2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend till en SES-modell. För att göra detta, ange bara en ARIMA-modell med en icke-säsongsskillnad och en MA (1) term med en konstant, dvs en ARIMA (0,1,1) modell med konstant. De långsiktiga prognoserna kommer då att ha en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Du kan inte göra detta i samband med säsongsjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant långsiktig exponentiell trend till en enkel exponentiell utjämningsmodell (med eller utan säsongsjustering) genom att använda inflationsjusteringsalternativet i prognosproceduren. Den lämpliga quotinflationen (procentuell tillväxt) per period kan uppskattas som lutningskoefficienten i en linjär trendmodell som är anpassad till data i samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter . (Return to top of page.) Browns Linjär (dvs dubbel) Exponentiell utjämning SMA-modellerna och SES-modellerna antar att det inte finns någon trend av något slag i data (vilket vanligtvis är OK eller åtminstone inte för dåligt för 1- stegprognoser när data är relativt bullriga), och de kan modifieras för att införliva en konstant linjär trend som visas ovan. Vad sägs om kortsiktiga trender Om en serie visar en växande växthastighet eller ett cykliskt mönster som står klart ut mot bruset, och om det finns behov av att prognostisera mer än en period framåt, kan uppskattningen av en lokal trend också vara en fråga. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning (LES) - modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trendmodellen är Browns linjära exponentiella utjämningsmodell, som använder två olika slätmade serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centra. (En mer sofistikerad version av denna modell, Holt8217s, diskuteras nedan.) Den algebraiska formen av Brown8217s linjär exponentiell utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men likvärdiga former. Den här kvotens kvotstandardkvot uttrycks vanligtvis enligt följande: Låt S beteckna den singeljämnade serien som erhållits genom att använda enkel exponentiell utjämning till serie Y. Dvs, värdet av S vid period t ges av: (Minns att, under enkel exponentiell utjämning, detta skulle vara prognosen för Y vid period t1.) Låt sedan Squot beteckna den dubbelsidiga serien erhållen genom att använda enkel exponentiell utjämning (med samma 945) till serie S: Slutligen prognosen för Y tk. för vilken kgt1 som helst, ges av: Detta ger e 1 0 (det vill säga lura lite och låt den första prognosen motsvara den faktiska första observationen) och e 2 Y 2 8211 Y 1. varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden som formeln baserad på S och S om de senare startades med användning av S1S1Y1. Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Holt8217s linjär exponentiell utjämning Brown8217s LES-modell beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer en begränsning på de datamönster som den kan passa: nivån och trenden får inte variera till oberoende priser. Holt8217s LES-modell tar upp problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst, t som i Brown8217s modell, finns det en uppskattning L t på lokal nivå och en uppskattning T t av den lokala trenden. Här rekryteras de rekursivt från värdet av Y observerat vid tiden t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som applicerar exponentiell utjämning till dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L t82091 och T t-1. respektive prognosen för Y tshy som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1. När det verkliga värdet observeras beräknas den uppdaterade uppskattningen av nivån rekursivt genom interpolering mellan Y tshy och dess prognos L t-1 T t 1 med vikter av 945 och 1- 945. Förändringen i beräknad nivå, nämligen L t 8209 L t82091. kan tolkas som en bullrig mätning av trenden vid tiden t. Den uppdaterade uppskattningen av trenden beräknas sedan rekursivt genom interpolering mellan L t 8209 L t82091 och den tidigare uppskattningen av trenden T t-1. Användning av vikter av 946 och 1-946: Tolkningen av trendutjämningskonstanten 946 är analog med den för nivåutjämningskonstanten 945. Modeller med små värden av 946 förutsätter att trenden ändras endast mycket långsamt över tiden, medan modeller med större 946 antar att det förändras snabbare. En modell med en stor 946 tror att den avlägsna framtiden är väldigt osäker, eftersom fel i trendberäkning blir ganska viktiga vid prognoser mer än en period framåt. (Återgå till början av sidan.) Utjämningskonstanterna 945 och 946 kan uppskattas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 945 0.3048 och 946 0.008. Det mycket lilla värdet på 946 innebär att modellen antar mycket liten förändring i trenden från en period till nästa, så i grunden försöker denna modell att estimera en långsiktig trend. I analogi med begreppet medelålder för de data som används för att uppskatta den lokala nivån i serien, är medelåldern för de data som används för att uppskatta den lokala trenden proportionell mot 1 946, men inte exakt lika med den . I det här fallet visar sig att vara 10.006 125. Detta är ett mycket exakt nummer eftersom precisionen av uppskattningen av 946 är verkligen 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så att denna modell är medeltal över ganska mycket historia för att uppskatta trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som beräknas i SEStrend-modellen. Det uppskattade värdet på 945 är också nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend, så det här är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som ska beräkna en lokal trend. Om du 8220eyeball8221 ser den här tomten ser den ut som om den lokala trenden har vänt sig nedåt i slutet av serien. Vad har hänt Parametrarna i denna modell har uppskattats genom att minimera det kvadrerade felet i 1-stegs-prognoser, inte längre prognoser, i vilket fall trenden gör inte en stor skillnad. Om allt du tittar på är 1 steg framåt, ser du inte den större bilden av trender över (säg) 10 eller 20 perioder. För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den använder en kortare baslinje för trendberäkning. Om vi ​​till exempel väljer att ställa in 946 0,1, är medelåldern för de data som används vid uppskattning av den lokala trenden 10 perioder, vilket betyder att vi medeltar trenden över de senaste 20 perioderna eller så. Here8217s hur prognosplotet ser ut om vi sätter 946 0,1 medan ni håller 945 0.3. Detta ser intuitivt rimligt ut för denna serie, men det är troligen farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad sägs om felstatistik Här är en modelljämförelse för de två modellerna ovan och tre SES-modeller. Det optimala värdet på 945. För SES-modellen är ungefär 0,3, men liknande resultat (med något mer eller mindre responsivitet) erhålls med 0,5 och 0,2. (A) Hål linjär exp. utjämning med alfa 0,3048 och beta 0,008 (B) Hål linjär exp. utjämning med alfa 0,3 och beta 0,1 (C) Enkel exponentiell utjämning med alfa 0,5 (D) Enkel exponentiell utjämning med alfa 0,3 (E) Enkel exponentiell utjämning med alfa 0,2 Deras statistik är nästan identisk, så vi kan verkligen göra valet på grundval av prognosfel i 1 steg före proverna. Vi måste falla tillbaka på andra överväganden. Om vi ​​starkt tror att det är vettigt att basera den nuvarande trendberäkningen på vad som hänt under de senaste 20 perioderna eller så kan vi göra ett ärende för LES-modellen med 945 0,3 och 946 0,1. Om vi ​​vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna vara enklare att förklara och skulle också ge fler mitten av vägtrafikprognoserna för de kommande 5 eller 10 perioderna. (Tillbaka till början av sidan.) Vilken typ av trend-extrapolation är bäst: Horisontell eller linjär Empiriska bevis tyder på att om uppgifterna redan har justerats (om det behövs) för inflationen, kan det vara osäkert att extrapolera kortfristiga trender mycket långt in i framtiden. Tendenser som uppenbaras idag kan sänkas i framtiden på grund av olika orsaker som produktförstörning, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Av denna anledning utför enkel exponentiell utjämning ofta bättre ur prov än vad som annars skulle kunna förväntas, trots sin kvotiv kvot horisontell trend extrapolering. Dämpade trendmodifieringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i dess trendprognoser. Den demoniserade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA-modell (1,1,2). Det är möjligt att beräkna konfidensintervaller kring långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller. (Var försiktig: inte all mjukvara beräknar konfidensintervaller för dessa modeller korrekt.) Bredden på konfidensintervallet beror på (i) modellens RMS-fel, (ii) utjämningstypen (enkel eller linjär) (iii) värdet (er) av utjämningskonstanten (erna) och (iv) antalet perioder framåt du prognoserar. I allmänhet sprids intervallet snabbare, eftersom 945 blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används. Detta ämne diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. (Återgå till början av sidan.) Skapa en enkel flyttning Det här är en av följande tre artiklar om tidsserieanalys i Excel Översikt över rörelsegennomsnittet Det rörliga genomsnittet är en statistisk metod som används för att utjämna kortvariga fluktuationer i en serie av data för att lättare kunna identifiera långsiktiga trender eller cykler. Det rörliga genomsnittet kallas ibland som ett rullande medelvärde eller ett löpande medelvärde. Ett rörligt medelvärde är en serie siffror, som var och en representerar medelvärdet av ett intervall av specificerat antal tidigare perioder. Ju större intervallet desto mer utjämning uppstår. Ju mindre intervallet desto mer är det glidande medlet liknar den faktiska dataserien. Flytta medelvärden utföra följande tre funktioner: Utjämning av data, vilket innebär att dataens passform anpassas till en rad. Minskar effekten av tillfällig variation och slumpmässigt brus. Markera outliers över eller under trenden. Det rörliga genomsnittet är en av de mest använda statistiska teknikerna inom industrin för att identifiera datatrender. Till exempel ser försäljningscheferna vanligtvis tre månaders glidande medelvärden av försäljningsdata. Artikeln kommer att jämföra två månaders, tre månaders och sex månaders enkla glidande medelvärden av samma försäljningsdata. Det rörliga genomsnittet används ganska ofta i teknisk analys av finansiella data som aktieavkastning och ekonomi för att lokalisera trender i makroekonomiska tidsserier såsom anställning. Det finns ett antal variationer av det rörliga genomsnittet. De vanligaste anställda är det enkla glidande medlet, det vägda glidande medlet och det exponentiella glidande medlet. Att utföra varje av dessa tekniker i Excel kommer att beskrivas i detalj i separata artiklar i den här bloggen. Här är en kort översikt över var och en av dessa tre tekniker. Enkelt rörligt medelvärde Varje punkt i ett enkelt glidande medelvärde är genomsnittet av ett angivet antal tidigare perioder. Denna bloggartikel kommer att ge en detaljerad förklaring av genomförandet av denna teknik i Excel. Viktad Flytta Genomsnittlig Poäng i det viktade glidande medlet representerar också ett genomsnitt av ett angivet antal tidigare perioder. Det vägda glidande medlet applicerar olika viktning till vissa tidigare perioder, ganska ofta får de senaste perioderna större vikt. En länk till en annan artikel i den här bloggen, som ger en detaljerad förklaring av genomförandet av denna teknik i Excel, är följande: Exponentiella rörliga medelpunkter i exponentiell glidande medelvärde representerar också ett genomsnitt av ett visst antal tidigare perioder. Exponentiell utjämning gäller viktningsfaktorer till tidigare perioder som minskar exponentiellt och når aldrig noll. Som ett resultat tar exponentiell utjämning hänsyn till alla tidigare perioder istället för ett angivet antal tidigare perioder som det vägda glidande medlet gör. En länk till en annan artikel i den här bloggen som ger en detaljerad förklaring av genomförandet av denna teknik i Excel är följande: Nedan beskrivs 3-stegs processen för att skapa ett enkelt glidande medelvärde av tidsseriedata i Excel Steg 1 8211-graf Den ursprungliga data i en tidsserie-plot Linjediagrammet är det vanligaste Excel-diagrammet för att gradera tidsseriedata. Ett exempel på ett sådant Excel-diagram som används för att plotta 13 perioder med försäljningsdata visas på följande sätt: Steg 2 8211 Skapa det rörliga genomsnittet i Excel Excel tillhandahåller verktyget Flyttande medel i menyn Dataanalys. Verktyget Moving Average skapar ett enkelt glidande medelvärde från en dataserie. Dialogrutan Flyttande medel ska fyllas i enligt följande för att skapa ett glidande medelvärde för de föregående 2 dataperioderna för varje datapunkt. Utgången för 2-års glidande medelvärde visas enligt följande tillsammans med formlerna som användes för att beräkna värdet för varje punkt i glidande medelvärdet. Steg 3 8211 Lägg till den rörliga genomsnittsserien i diagrammet. Dessa data ska nu läggas till i diagrammet som innehåller den ursprungliga tidslinjen för försäljningsdata. Uppgifterna kommer helt enkelt att läggas till som en ytterligare dataserie i diagrammet. För att göra det, högerklicka var som helst på diagrammet och en meny kommer dyka upp. Hit Välj data för att lägga till den nya serien av data. Den glidande genomsnittsserien kommer att läggas till genom att fylla i dialogrutan Redigera serier enligt följande: Diagrammet som innehåller den ursprungliga dataserien och den data8217s 2-intervallet enkelt glidande medelvärde visas som följer. Observera att den glidande medellinjen är ganska lite jämnare och råa data8217s avvikelser över och under trendlinjen är mycket tydligare. Den övergripande trenden är nu också mycket tydligare. A 3-interval moving average can be created and placed on the chart using the same procedure as follows: It is interesting to note that the 2-interval simple moving average creates a smoother graph than the3-interval simple moving average. In this case the 2-interval simple moving average might be the more desirable than the 3-interval moving average. For comparison, a 6-interval simple moving average will be calculated and added to the chart in the same way as follows: As expected, the 6-interval simple moving average is significantly smoother than the 2 or 3-interval simple moving averages. A smoother graph more closely fits a straight line. Analyzing Forecast Accuracy Accuracy can be described as goodness of fit. The two components of forecast accuracy are the following: Forecast Bias 8211 The tendency of a forecast to be consistently higher or lower than actual values of a time series. Forecast bias is the sum of all error divided by the number of periods as follows: A positive bias indicates a tendency to under-forecast. A negative bias indicates a tendency to over-forecast. Bias does not measure accuracy because positive and negative error cancel each other out. Forecast Error 8211 The difference between actual values of a time series and the predicted values of the forecast. The most common measures of forecast error are the following: MAD 8211 Mean Absolute Deviation MAD calculates the average absolute value of the error and is computed with the following formula: Averaging the absolute values of the errors eliminates the canceling effect of positive and negative errors. The smaller the MAD, the better the model is. MSE 8211 Mean Squared Error MSE is a popular measure of error that eliminates the cancelling effect of positive and negative errors by summing the squares of the error with the following formula: Large error terms tend to exaggerate MSE because the error terms are all squared. RMSE (Root Square Mean) reduces this problem by taking the square root of MSE. MAPE 8211 Mean Absolute Percent Error MAPE also eliminates the cancelling effect of positive and negative errors by summing the absolute values of the error terms. MAPE calculates the sum of the percent error terms with the following formula: By summing percent error terms, MAPE can be used to compare forecasting models that use different scales of measurement. Calculating Bias, MAD, MSE, RMSE, and MAPE in Excel For the Simple Moving Average Bias, MAD, MSE, RMSE, and MAPE will be calculated in Excel to evaluate the 2-interval, 3-interval, and 6-interval simple moving average forecast obtained in this article and shown as follows: The first step is to calculate E t . E t 2. E t , E t Y t-act . and then sum them as follows: Bias, MAD, MSE, MAPE and RMSE can be calculated as follows: The same calculations are now performed to calculate Bias, MAD, MSE, MAPE and RMSE for the 3-interval simple moving average. The same calculations are now performed to calculate Bias, MAD, MSE, MAPE and RMSE for the 6-interval simple moving average. Bias, MAD, MSE, MAPE and RMSE are summarized for the 2-interval, 3-interval, and 6-interval simple moving averages as follows. The 3-interval simple moving average is the model that most closely fits that actual data. 160 Excel Master Series Blog Directory Statistical Topics and Articles In Each TopicA Forecast Calculation Examples A.1 Forecast Calculation Methods Twelve methods of calculating forecasts are available. Most of these methods provide for limited user control. For example, the weight placed on recent historical data or the date range of historical data used in the calculations might be specified. The following examples show the calculation procedure for each of the available forecasting methods, given an identical set of historical data. The following examples use the same 2004 and 2005 sales data to produce a 2006 sales forecast. In addition to the forecast calculation, each example includes a simulated 2005 forecast for a three month holdout period (processing option 19 3) which is then used for percent of accuracy and mean absolute deviation calculations (actual sales compared to simulated forecast). A.2 Forecast Performance Evaluation Criteria Depending on your selection of processing options and on the trends and patterns existing in the sales data, some forecasting methods will perform better than others for a given historical data set. A forecasting method that is appropriate for one product may not be appropriate for another product. It is also unlikely that a forecasting method that provides good results at one stage of a products life cycle will remain appropriate throughout the entire life cycle. You can choose between two methods to evaluate the current performance of the forecasting methods. These are Mean Absolute Deviation (MAD) and Percent of Accuracy (POA). Both of these performance evaluation methods require historical sales data for a user specified period of time. This period of time is called a holdout period or periods best fit (PBF). The data in this period is used as the basis for recommending which of the forecasting methods to use in making the next forecast projection. This recommendation is specific to each product, and may change from one forecast generation to the next. The two forecast performance evaluation methods are demonstrated in the pages following the examples of the twelve forecasting methods. A.3 Method 1 - Specified Percent Over Last Year This method multiplies sales data from the previous year by a user specified factor for example, 1.10 for a 10 increase, or 0.97 for a 3 decrease. Required sales history: One year for calculating the forecast plus the user specified number of time periods for evaluating forecast performance (processing option 19). A.4.1 Forecast Calculation Range of sales history to use in calculating growth factor (processing option 2a) 3 in this example. Sum the final three months of 2005: 114 119 137 370 Sum the same three months for the previous year: 123 139 133 395 The calculated factor 370395 0.9367 Calculate the forecasts: January, 2005 sales 128 0.9367 119.8036 or about 120 February, 2005 sales 117 0.9367 109.5939 or about 110 March, 2005 sales 115 0.9367 107.7205 or about 108 A.4.2 Simulated Forecast Calculation Sum the three months of 2005 prior to holdout period (July, Aug, Sept): 129 140 131 400 Sum the same three months for the previous year: 141 128 118 387 The calculated factor 400387 1.033591731 Calculate simulated forecast: October, 2004 sales 123 1.033591731 127.13178 November, 2004 sales 139 1.033591731 143.66925 December, 2004 sales 133 1.033591731 137.4677 A.4.3 Percent of Accuracy Calculation POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Mean Absolute Deviation Calculation MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677)3 12.75624 A.5 Method 3 - Last year to This Year This method copies sales data from the previous year to the next year. Required sales history: One year for calculating the forecast plus the number of time periods specified for evaluating forecast performance (processing option 19). A.6.1 Forecast Calculation Number of periods to be included in the average (processing option 4a) 3 in this example For each month of the forecast, average the previous three months data. January forecast: 114 119 137 370, 370 3 123.333 or 123 February forecast: 119 137 123 379, 379 3 126.333 or 126 March forecast: 137 123 126 379, 386 3 128.667 or 129 A.6.2 Simulated Forecast Calculation October 2005 sales (129 140 131)3 133.3333 November 2005 sales (140 131 114)3 128.3333 December 2005 sales (131 114 119)3 121.3333 A.6.3 Percent of Accuracy Calculation POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Mean Absolute Deviation Calculation MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Method 5 - Linear Approximation Linear Approximation calculates a trend based upon two sales history data points. Those two points define a straight trend line that is projected into the future. Use this method with caution, as long range forecasts are leveraged by small changes in just two data points. Required sales history: The number of periods to include in regression (processing option 5a), plus 1 plus the number of time periods for evaluating forecast performance (processing option 19). A.8.1 Forecast Calculation Number of periods to include in regression (processing option 6a) 3 in this example For each month of the forecast, add the increase or decrease during the specified periods prior to holdout period the previous period. Average of the previous three months (114 119 137)3 123.3333 Summary of the previous three months with weight considered (114 1) (119 2) (137 3) 763 Difference between the values 763 - 123.3333 (1 2 3) 23 Ratio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 232 11.5 Value2 Average - value1 ratio 123.3333 - 11.5 2 100.3333 Forecast (1 n) value1 value2 4 11.5 100.3333 146.333 or 146 Forecast 5 11.5 100.3333 157.8333 or 158 Forecast 6 11.5 100.3333 169.3333 or 169 A.8.2 Simulated Forecast Calculation October 2004 sales: Average of the previous three months (129 140 131)3 133.3333 Summary of the previous three months with weight considered (129 1) (140 2) (131 3) 802 Difference between the values 802 - 133.3333 (1 2 3) 2 Ratio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 22 1 Value2 Average - value1 ratio 133.3333 - 1 2 131.3333 Forecast (1 n) value1 value2 4 1 131.3333 135.3333 November 2004 sales Average of the previous three months (140 131 114)3 128.3333 Summary of the previous three months with weight considered (140 1) (131 2) (114 3) 744 Difference between the values 744 - 128.3333 (1 2 3) -25.9999 Value1 DifferenceRatio -25.99992 -12.9999 Value2 Average - value1 ratio 128.3333 - (-12.9999) 2 154.3333 Forecast 4 -12.9999 154.3333 102.3333 December 2004 sales Average of the previous three months (131 114 119)3 121.3333 Summary of the previous three months with weight considered (131 1) (114 2) (119 3) 716 Difference between the values 716 - 121.3333 (1 2 3) -11.9999 Value1 DifferenceRatio -11.99992 -5.9999 Value2 Average - value1 ratio 121.3333 - (-5.9999) 2 133.3333 Forecast 4 (-5.9999) 133.3333 109.3333 A.8.3 Percent of Accuracy Calculation POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Mean Absolute Deviation Calculation MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Method 7 - Secon d Degree Approximation Linear Regression determines values for a and b in the forecast formula Y a bX with the objective of fitting a straight line to the sales history data. Second Degree Approximation is similar. However, this method determines values for a, b, and c in the forecast formula Y a bX cX2 with the objective of fitting a curve to the sales history data. This method may be useful when a product is in the transition between stages of a life cycle. For example, when a new product moves from introduction to growth stages, the sales trend may accelerate. Because of the second order term, the forecast can quickly approach infinity or drop to zero (depending on whether coefficient c is positive or negative). Therefore, this method is useful only in the short term. Forecast specifications: The formulae finds a, b, and c to fit a curve to exactly three points. You specify n in the processing option 7a, the number of time periods of data to accumulate into each of the three points. In this example n 3. Therefore, actual sales data for April through June are combined into the first point, Q1. July through September are added together to create Q2, and October through December sum to Q3. The curve will be fitted to the three values Q1, Q2, and Q3. Required sales history: 3 n periods for calculating the forecast plus the number of time periods required for evaluating the forecast performance (PBF). Number of periods to include (processing option 7a) 3 in this example Use the previous (3 n) months in three-month blocks: Q1(Apr - Jun) 125 122 137 384 Q2(Jul - Sep) 129 140 131 400 Q3(Oct - Dec) 114 119 137 370 The next step involves calculating the three coefficients a, b, and c to be used in the forecasting formula Y a bX cX2 (1) Q1 a bX cX2 (where X 1) a b c (2) Q2 a bX cX2 (where X 2) a 2b 4c (3) Q3 a bX cX2 (where X 3) a 3b 9c Solve the three equations simultaneously to find b, a, and c: Subtract equation (1) from equation (2) and solve for b (2) - (1) Q2 - Q1 b 3c Substitute this equation for b into equation (3) (3) Q3 a 3(Q2 - Q1) - 3c c Finally, substitute these equations for a and b into equation (1) Q3 - 3(Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2)2 The Second Degree Approximation method calculates a, b, and c as follows: a Q3 - 3(Q2 - Q1) 370 - 3(400 - 384) 322 c (Q3 - Q2) (Q1 - Q2)2 (370 - 400) (384 - 400)2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23)X2 January thru March forecast (X4): (322 340 - 368)3 2943 98 per period April thru June forecast (X5): (322 425 - 575)3 57.333 or 57 per period July thru September forecast (X6): (322 510 - 828)3 1.33 or 1 per period October thru December (X7) (322 595 - 11273 -70 A.9.2 Simulated Forecast Calculation October, November and December, 2004 sales: Q1(Jan - Mar) 360 Q2(Apr - Jun) 384 Q3(Jul - Sep) 400 a 400 - 3(384 - 360) 328 c (400 - 384) (360 - 384)2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Percent of Accuracy Calculation POA (136 136 136) (114 119 137) 100 110.27 A.9.4 Mean Absolute Deviation Calculation MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Method 8 - Flexible Method The Flexible Method (Percent Over n Months Prior) is similar to Method 1, Percent Over Last Year. Both methods multiply sales data from a previous time period by a user specified factor, then project that result into the future. In the Percent Over Last Year method, the projection is based on data from the same time period in the previous year. The Flexible Method adds the capability to specify a time period other than the same period last year to use as the basis for the calculations. Multiplication factor. For example, specify 1.15 in the processing option 8b to increase the previous sales history data by 15. Base period. For example, n 3 will cause the first forecast to be based upon sales data in October, 2005. Minimum sales history: The user specified number of periods back to the base period, plus the number of time periods required for evaluating the forecast performance (PBF). A.10.4 Mean Absolute Deviation Calculation MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Method 9 - Weighted Moving Average The Weighted Moving Average (WMA) method is similar to Method 4, Moving Average (MA). However, with the Weighted Moving Average you can assign unequal weights to the historical data. The method calculates a weighted average of recent sales history to arrive at a projection for the short term. More recent data is usually assigned a greater weight than older data, so this makes WMA more responsive to shifts in the level of sales. However, forecast bias and systematic errors still do occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products rather than for products in the growth or obsolescence stages of the life cycle. n the number of periods of sales history to use in the forecast calculation. For example, specify n 3 in the processing option 9a to use the most recent three periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. It results in a stable forecast, but will be slow to recognize shifts in the level of sales. On the other hand, a small value for n (such as 3) will respond quicker to shifts in the level of sales, but the forecast may fluctuate so widely that production can not respond to the variations. The weight assigned to each of the historical data periods. The assigned weights must total to 1.00. For example, when n 3, assign weights of 0.6, 0.3, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). MAD (133.5 - 114 121.7 - 119 118.7 - 137) 3 13.5 A.12 Method 10 - Linear Smoothing This method is similar to Method 9, Weighted Moving Average (WMA). However, instead of arbitrarily assigning weights to the historical data, a formula is used to assign weights that decline linearly and sum to 1.00. The method then calculates a weighted average of recent sales history to arrive at a projection for the short term. As is true of all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products rather than for products in the growth or obsolescence stages of the life cycle. n the number of periods of sales history to use in the forecast calculation. This is specified in the processing option 10a. For example, specify n 3 in the processing option 10b to use the most recent three periods as the basis for the projection into the next time period. The system will automatically assign the weights to the historical data that decline linearly and sum to 1.00. For example, when n 3, the system will assign weights of 0.5, 0.3333, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). A.12.1 Forecast Calculation Number of periods to include in smoothing average (processing option 10a) 3 in this example Ratio for one period prior 3(n2 n)2 3(32 3)2 36 0.5 Ratio for two periods prior 2(n2 n)2 2(32 3)2 26 0.3333.. Ratio for three periods prior 1(n2 n)2 1(32 3)2 16 0.1666.. January forecast: 137 0.5 119 13 114 16 127.16 or 127 February forecast: 127 0.5 137 13 119 16 129 March forecast: 129 0.5 127 13 137 16 129.666 or 130 A.12.2 Simulated Forecast Calculation October 2004 sales 129 16 140 26 131 36 133.6666 November 2004 sales 140 16 131 26 114 36 124 December 2004 sales 131 16 114 26 119 36 119.3333 A.12.3 Percent of Accuracy Calculation POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Mean Absolute Deviation Calculation MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Method 11 - Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing the system assigns weights to the historical data that decline linearly. In exponential smoothing, the system assigns weights that exponentially decay. The exponential smoothing forecasting equation is: Forecast a(Previous Actual Sales) (1 - a) Previous Forecast The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. a is the weight applied to the actual sales for the previous period. (1 - a) is the weight applied to the forecast for the previous period. Valid values for a range from 0 to 1, and usually fall between 0.1 and 0.4. The sum of the weights is 1.00. a (1 - a) 1 You should assign a value for the smoothing constant, a. If you do not assign values for the smoothing constant, the system calculates an assumed value based upon the number of periods of sales history specified in the processing option 11a. a the smoothing constant used in calculating the smoothed average for the general level or magnitude of sales. Valid values for a range from 0 to 1. n the range of sales history data to include in the calculations. Generally one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 3) was chosen in order to reduce the manual calculations required to verify the results. Exponential smoothing can generate a forecast based on as little as one historical data point. Minimum required sales history: n plus the number of time periods required for evaluating the forecast performance (PBF). A.13.1 Forecast Calculation Number of periods to include in smoothing average (processing option 11a) 3, and alpha factor (processing option 11b) blank in this example a factor for the oldest sales data 2(11), or 1 when alpha is specified a factor for the 2nd oldest sales data 2(12), or alpha when alpha is specified a factor for the 3rd oldest sales data 2(13), or alpha when alpha is specified a factor for the most recent sales data 2(1n), or alpha when alpha is specified November Sm. Avg. a(October Actual) (1 - a)October Sm. Avg. 1 114 0 0 114 December Sm. Avg. a(November Actual) (1 - a)November Sm. Avg. 23 119 13 114 117.3333 January Forecast a(December Actual) (1 - a)December Sm. Avg. 24 137 24 117.3333 127.16665 or 127 February Forecast January Forecast 127 March Forecast January Forecast 127 A.13.2 Simulated Forecast Calculation July, 2004 Sm. Avg. 22 129 129 August Sm. Avg. 23 140 13 129 136.3333 September Sm. Avg. 24 131 24 136.3333 133.6666 October, 2004 sales Sep Sm. Avg. 133.6666 August, 2004 Sm. Avg. 22 140 140 September Sm. Avg. 23 131 13 140 134 October Sm. Avg. 24 114 24 134 124 November, 2004 sales Sep Sm. Avg. 124 September 2004 Sm. Avg. 22 131 131 October Sm. Avg. 23 114 13 131 119.6666 November Sm. Avg. 24 119 24 119.6666 119.3333 December 2004 sales Sep Sm. Avg. 119.3333 A.13.3 Percent of Accuracy Calculation POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Mean Absolute Deviation Calculation MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Method 12 - Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed averaged adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. a the smoothing constant used in calculating the smoothed average for the general level or magnitude of sales. Valid values for alpha range from 0 to 1. b the smoothing constant used in calculating the smoothed average for the trend component of the forecast. Valid values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast a and b are independent of each other. They do not have to add to 1.0. Minimum required sales history: two years plus the number of time periods required for evaluating the forecast performance (PBF). Method 12 uses two exponential smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal factor. A.14.1 Forecast Calculation A) An exponentially smoothed average MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Evaluating the Forecasts You can select forecasting methods to generate as many as twelve forecasts for each product. Each forecasting method will probably create a slightly different projection. When thousands of products are forecast, it is impractical to make a subjective decision regarding which of the forecasts to use in your plans for each of the products. The system automatically evaluates performance for each of the forecasting methods that you select, and for each of the products forecast. You can choose between two performance criteria, Mean Absolute Deviation (MAD) and Percent of Accuracy (POA). MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a user specified period of time. This period of recent history is called a holdout period or periods best fit (PBF). To measure the performance of a forecasting method, use the forecast formulae to simulate a forecast for the historical holdout period. There will usually be differences between actual sales data and the simulated forecast for the holdout period. When multiple forecast methods are selected, this same process occurs for each method. Multiple forecasts are calculated for the holdout period, and compared to the known sales history for that same period of time. The forecasting method producing the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in your plans. This recommendation is specific to each product, and might change from one forecast generation to the next. A.16 Mean Absolute Deviation (MAD) MAD is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD has shown to be the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, there is a simple mathematical relationship between MAD and two other common measures of distribution, standard deviation and Mean Squared Error: A.16.1 Percent of Accuracy (POA) Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently two low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high, would be an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. Error Actual - Forecast When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, it is not so important to eliminate forecast errors as it is to generate unbiased forecasts. However in service industries, the above situation would be viewed as three errors. The service would be understaffed in the first period, then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. The summation over the holdout period allows positive errors to cancel negative errors. When the total of actual sales exceeds the total of forecast sales, the ratio is greater than 100. Of course, it is impossible to be more than 100 accurate. When a forecast is unbiased, the POA ratio will be 100. Therefore, it is more desirable to be 95 accurate than to be 110 accurate. The POA criteria select the forecasting method that has a POA ratio closest to 100. Scripting on this page enhances content navigation, but does not change the content in any way.

No comments:

Post a Comment